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 In this tutorial, you are going to learn to apply two fundamental machine-learning techniques, 

linear discriminant analysis (LDA) [1] and principal component analysis (PCA) [2], on 2 and 

4 dimensional (2D and 4D) artificial data and 8 dimensional real colon classification data. You 

will learn 1) how those 2 machine-learning techniques work, 2) how they are different, 3) what 

are the advantages and disadvantages of them, and 4) how the characteristics and performance 

of them differ by using receiver-operating-characteristic analysis (ROC analysis).  
 

I. Applying LDA and PCA on 2D artificial data 

 

When you work with real high-dimensional data, things get messy.  So let’s build our intuition by 

first looking at some simpler artificial datasets.  

 We have created an artificial data having 2 features (2-dimensional data).  Each data example 

is a vector 𝒙 = (𝑥1, 𝑥2)𝛵.  There are two classes, 𝜔1 and 𝜔2.   

 In real-life problems, we do not know the distributions of the data or their true statistics.  But 

in this case, since we created the data by ourselves, we do know. For each class, the probability 

density function is a multivariate Gaussian.  The mean vectors for the two classes are: 

𝜇1 = 𝐸[𝐱|𝜔1] = (0,0)𝛵 

𝜇2 = 𝐸[𝐱|𝜔2] = (2,2)𝛵  

The covariance matrices for the two classes are identical: 

Σ = cov[𝐱|𝜔] = (1,0; 0,3) 

a) First, try to use your own reasoning to find a good linear classifier for this problem. For this 

part, you may use what we have told you about the true distributions.  Under this distribution, 

the data are ellipsoid full of points. Try to imagine these distributions, remembering that the 

mean vectors represent the centers of these ellipsoids.  Try to guess (using geometrical 

reasoning) what vector w would produce good separation of the two classes, when used in a 

linear model where .  What would be a logical choice for 
  
w

0
?  

b) Next you will use Octave to compute and study the Fisher LDA and PCA for this problem.  

For this analysis we are giving you a 2D dataset (in file 2D_artificial_dataset.mat).  This 

dataset contains 2 classes. Each class has 1,000 samples. Their mean and covariance matrices 

were described above. 

 

1. Visualize (graph) the data.  

Run program ‘Visualize_2Ddata.m’ to visualize the 2-D data in scatter plots. 

Looking at the scatter plot, we can see that the two classes have good separation when 

viewed from certain points of view, but no separation at all in other directions.  Relate these 

graphs to your original thinking in part (a).  

Note:1. Do not close the plot until the end of this session. You will need to draw the 

best w and the decision boundary for LDA and PCA on this scatter plot. 2. On different 
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computers, the display of the samples (dots '.' and stars '*') in plot may look different. 

You may need to adjust the font size of these samples in code. Or simply zoom in and 

zoom out using the plot tools in the plot toolbar. 

 

2. Compute the Fisher discriminant vector w using the eigenvector equation: 

 
Remember that the best w is the eigenvector corresponding to the largest eigenvalue, 

because the eigenvalue is the Fisher ratio 
   J (w), which is a kind of signal-to-noise ratio.  

To help with this, we are providing you with a function (eigsort.m) that outputs the 

eigenvectors in descending order of eigenvalue.  Thus, the first eigenvector is the one with 

the largest eigenvalue. What w did you get? Is this what you expected? (Run program 

‘LDA_2Ddata.m’ to get the best w and the decision boundary for LDA.) 

Note:  1. The sign of the eigenvectors you calculate is not important.  For example, 

(1,0) indicates the same axis as (-1,0). 2. When the code needs to output a value (for 

example eigen values) in the command window while running, you need to go to the 

command window and press 'f' key to proceed or press 'q' to run until the end of the 

code. Otherwise the code won't proceed. 

 

3. Repeat step 2 for PCA. Run program ‘PCA_2Ddata.m’ to get the best w and the decision 

boundary for PCA. Compare the differences between LDA and PCA in terms of the best 

w and the decision boundary.  

 

II. Applying LDA and PCA on 4D artificial data 

  

Now we are moving to a higher dimensional data. We have created an artificial dataset containing 

two classes with 4 features (in file 4D_artificial_dataset.mat). Each class has 1,000 samples. 

The mean vector for class 1 and class 2 are (0,0,0,0)𝑇 and (2,2,0,0)𝑇 respectively. The covariance 

matrices for the two classes are identical, Σ = cov[𝐱|𝜔] = (1,0,0,0; 0,3,0,0; 0,0,1,0; 0,0,0,1).  

 

Next you will use Octave to compute and study the Fisher discriminant and PCA for this problem.  

 

1. Visualize (graph) the data.  When data are more than 3-dimensions, you cannot view them 

directly.  One method of displaying high-dimensional data is the “trellis plot” – a matrix 

of scatter plots, with each scatter plot in the matrix graphing one of the variables against 

another.  For example, the scatter plot in the (2,1) position in the matrix plots 
  
x

2
 against 

  
x

1
.  You can think of each plot as the projection of the 4D scatter plot onto a different 

plane, as if we were viewing the clouds of points from different directions (along different 

coordinate axes).  Run program ‘Visualize_4Ddata.m’ to visualize the dataset.  Looking 

at the scatter plots, we can see that the two classes have good separation when viewed from 

certain points of view, but no separation at all in other directions. In which plot(s) do you 

see the best separation? 

 

2. Compute the Fisher discriminant vector w using the eigenvector equation we learned in the 

previous section. What w did you get?  What Fisher ratio did you find? (Run program 

‘LDA_4Ddata.m’ to get the best w and the decision boundary for LDA based on the first 

two features.) 
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3. Generating histograms: 

a) Compute   w
T
x  for each example data point.   

b) Plot two histograms of   w
T
x  (one histogram for each class) on a single graph.  The 

result should be two overlapping Gaussian-shaped functions (but they will be noisy, 

not smooth like a Gaussian). 

Run program ‘LDA_4Ddata_histogram.m’ to get the histogram. 

 

4. Repeat step 2 and 3 for PCA. Run program ‘PCA_4Ddata.m’ to get the best w and the 

decision boundary for PCA based on the first two features. Run program 

‘PCA_4Ddata_histogram.m’ to get the histogram. 

 

5. ROC analysis: 

a) Let’s apply ROC analysis to measure the performance of LDA and PCA. Assume 

x1 in the dataset “negative/No” class and x2 in the dataset “positive/Yes” class. 

Which method produces the higher ROC curve?  Is this what you expect?  

b) It is sometimes convenient to summarize the performance by one number, instead 

of an ROC curve. To do this, it is common to use the area under the ROC curve 

(AUC), which is often denoted as 
 
A

z
.  Calculate AUC for each of your ROC curves 

from part (a).  You can use the simple rectangle method [3] to perform the 

numerical integration. Which method produces the higher AUC value?  Is this what 

you expect?  What is the maximum possible AUC value that can occur? 

(Run program ‘LDA_ROC_4D.m’ and ‘PCA_ROC_4D.m’ to draw the ROC curve 

and calculate the AUC value for LDA and PCA respectively.) 

 

III. Applying LDA and PCA on colon classification data 

  

Now it is time to move on to real clinical data [4,5]. We prepared an 8-feature colon 

classification dataset (file ‘8D_colon_dataset.mat’). This dataset contains two classes. Class 1 is 

polyp class consisting of 46 samples. Class 2 is non-polyp class consisting of 500 samples. The 8 

features, listed in table 1, are selected from the 79 features in the original dataset with the goal of 

maximizing the AUC. A sophisticated feature selection algorithm called Binary Coordinate 

Ascent (BCA) [6] was applied for this task. An alternative feature selection is the Max-AUC 

feature selection [4]. 

 

1. Visualize (graph) the data.  Use “trellis plot” to visualize the high dimensional data.  In this 

case there will be 64 plots in the matrix. Run program ‘Visualize_8Dcolondata.m’ to 

visualize the dataset. Looking at the scatter plots. In which plot(s) do you see the best 

separation? 

 

2. Compute the Fisher discriminant vector w using the eigenvector equation we learned in the 

previous section. What w did you get?  What Fisher ratio did you find? (Run program 

‘LDA_8Dcolondata.m’ to get the best w and the decision boundary for LDA based on the 

first and the eighth feature.) 

 

3. Generating normalized histograms: 



2017/3/12 

 

4 

a) Compute   w
T
x  for each example data point.   

b) Plot two histograms of   w
T
x  (one histogram for each class) on a single graph.  The 

result should be two overlapping Gaussian-shaped functions (but they will be noisy, 

not smooth like a Gaussian). 

Run program ‘LDA_8Dcolon_histogram.m’ to get the normalized histogram. 

 

4. Repeat step 2 and 3 for PCA. Run program ‘PCA_8Dcolondata.m’ to get the best w and 

the decision boundary for PCA based on the first and the eighth feature. Run program 

‘PCA_8Dcolon_histogram.m’ to get the histogram. 

 

5. ROC analysis: 

a) Let’s apply ROC analysis to measure the performance of LDA and PCA on the 

colon data. Assume x1 in the dataset “positive/Yes” class and x2 in the dataset 

“negative/No” class. Which method produces the higher ROC curve?  

b) Calculate AUC for each of your ROC curves from part (a). Which method produces 

the higher AUC value?  Is this what you expect?  

(Run program ‘LDA_ROC_8Dcolon.m’ and ‘PCA_ROC_8Dcolon.m’ to draw the 

ROC curve and calculate the AUC value for LDA and PCA.) 

 
Table 1 – List of 8 features used in this experiment 

Feature 1 Standard deviation of gray levels inside the 2D candidate 

Feature 2 Radial gradient index (RGI) outside the 2D candidate 

Feature 3 Tangential gradient index (TGI) outside the 2D candidate 

Feature 4 Matsushita distance of normalized histograms in the gray scale image 

Feature 5 Mode of the histogram inside the lesion candidate in the gray scale image 

Feature 6 Maximum of the histogram inside the lesion candidate in the gray scale image 

Feature 7 Maximum of the histogram outside the lesion candidate in the gray scale image 

Feature 8 Mean voxel intensity in the Sobel image 

 

III. Summary 

 

In this big data era, machine learning is indispensable in any applications from medical to robotics 

to the Internet to financial, to automobiles.  This tutorial covers only the fundamentals of machine 

learning and hands-on experience on basic classification data.  Once you lean the fundamentals, 

however, you can apply your fundamental knowledge and experience to solve more complicated 

problems with more advanced machine-learning techniques.   

 

For those who are interested in such advanced machine learning, we recommend reading the 

following textbooks and papers from my group.  Examples of recommended textbooks include 

Haykin’s textbook [7] that is considered a bible of artificial neural networks (ANNs) that 

comprehensively covers ANNs, Bishop’s textbook [8] that is a good textbook for ANNs in a 

pattern recognition aspect, and Vapnik’s textbook [9] that convers the theory of support vector 
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machines.  In addition, Suzuki’s reference books [10-11] cover the recent advances in machine 

learning and computational intelligence in the medical imaging area.  Advanced machine-learning 

models that can learn pixels in images directly from our group [12-18], now people call similar 

approaches deep learning or deep convolutional neural networks, would be very useful to learn, as 

such machine-learning models are revolutionizing many fields including computer vision and 

medical imaging. 
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document, code, and data. Distributing, copying, or using the materials outside this tutorial 
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